MetaDAVis: An R shiny web app for efficient visualization and analysis of metagenomic

data

Tutorial for MetaDAVis

interactive <u>Metagenome Data Analysis and Vis</u>ualization (**MetaDAVis**) application analyzes 16S and whole metagenome sequence results at various levels (kingdom to species). It is a browserbased and user-friendly R Shiny application for researchers to analyze and visualize without programming proficiency. It comprises six functional analyses.

- 1. Data Summary and Distribution
- 2. Diversity analysis
- 3. Dimension reduction
- 4. Correlation analysis
- 5. Heatmap
- 6. Differential abundance (Two and multiple groups)

In this tutorial, we will go through the installation and usage of each functional module using the MetaDAVis available example dataset. The is publicly at (https://github.com/GudaLab/MetaDAVis) and https://www.gudalab-rtools.net/MetaDAVis. The example dataset is provided the GitHub on page (https://github.com/GudaLab/MetaDAVis/tree/main/www/example data).

How to start MetaDAVis locally

Download the MetaDAV is application locally from the GitHub page (<u>https://github.com/GudaLab/MetaDAV is</u>).

Requirement:

- R (≥ 4.4.2), available at (<u>https://www.r-project.org/</u>)
- RStudio (≥ 2024.12.0) available at (<u>https://posit.co/download/rstudio-desktop/</u>)
- Bioconductor (\geq 3.20) and
- Shiny ($\geq 1.10.0$)

This Application was tested in Linux (Red Hat) and Windows 10

Start an R session using RStudio and run the following commands to install the shiny package: install.packages("shiny")

To run MetaDAVis by the following commands in R: library(shiny) shiny::runGitHub("MetaDAVis","GudaLab")

Or

Alternatively, download the source code from GitHub and run the following command in the R session using RStudio:

library(shiny)

runApp('/path/to/the/MetaDAVis-master', launch.browser=TRUE)

The Interface of MetaDAVis will pop up. See Figure S1

MetaDAVis	Upload files	Distribution -	Diversity 🗸	Dimension reduction -	Correlation -	Heatmap	Differential abundance -		
	MetaDAVis								
Introduct	ntroduction								
MetaDAVis (int visualize metag	eractive Metager enomics results	nome Data Analysi from kingdom to s	s and Visualizati pecies level. It co	on) is a browser-based and mprises six functional ana	d user-friendly R Si lyses.	hiny application	n for researchers without programming proficiency to analyze and		
The package in • Data sum The data • Gr • Inv • Diversity • Aly • or	ncludes the follo many and abund can be visualize oup: Samples an dividual: Sample- analysis oba: Seven differ eta: A total of 42 of dination with a su	owing: dance distribution id in the stacked by e grouped by giver -based plots. rent methods was in different diversity in mmary table.	ar plot for abunda n conditions base used from the ph netrics were integ	ance percentage, value, an ed on the metadata. yloseq package. The result grated from the phyloseq (u	d relative frequend ts were displayed i inlist(distanceMeth	ry from 2 to 10 n a box and vid odList)) packa	0 Taxa. olin plot with a summary table. ge with six selection methods. Results are visualized by bar and		
Dimensio P(v P(v t-s v U) Correlation	on reduction CA: The ggfortify SNE: Six different MAP: Six differen on analysis	and plotly package t methods was use t methods was use	e was used to dis d from the scate ed from the scate	play plots in 2D(with and w r package. The samples we r package. Displays the UI	vithout labels and f ere displayed in a t MAP plot in sample	rame) and 3D -SNE plot (2 a and cluster-b	with their summary table. nd 3 dimensions) with a summary table. ased with a summary table.		
 Ta Sa Heatmap Differenti Tw sta 	xa-based: The gg imple-based: Six i: It was integrate al abundance vo groups: Six dif atistical analysis a	gfortify package wa different methods ad with the Completed with the Completed fferent analyses we and generate plots pharicon. Two differences	as used to displa was used from th xHeatmap packatere provided using and summary ta	y plot (with and without lab he scater package. The res age. Display heatmap with g the Wilcoxon Rank Sum bles based on the significa-	els and frame) and sult was displayed and without row ar test, t-test, metage ant taxa.	I their summar in 2 and 3 dim d column deno enomeSeq, DE	y table. ensions t-SNE plots with a summary table. drograms and names. Seq2, Limma-Voom, edgeR, LEfSe, MaAsLin3. These will perform table multiple group comparisons. These will perform statistical applysis.		
an	d generate plots	and summary tabl	es based on the	significant taxa.	anu ANO vA was u		ian multiple group companisons. These will perform statistical allalysis		

*It provides publication quality plots in seven formats: JPG, TIFF, PDF, SVG, BMP, EPS, and PS and summary tables (.csv format) to visualize and download.

use MetaDAVis online

MetaDAVis is deployed at: https://www.gudalab-rtools.net/MetaDAVis

Figure S1: Interface of MetaDAVis application

R Packages	Used for	Citation	Web link
shiny	To develop the web and interactive application	(Chang et al., 2022)	https://github.com/rstudio/shiny
DT	Interface to the data tables	(Xie et al., 2022)	https://github.com/rstudio/DT
shinyFiles	A server-side file system viewer for shiny	(Pedersen et al., 2022)	https://github.com/thomasp85/shinyFiles
shinythemes	To use the shiny themes	(Chang 2021)	https://github.com/rstudio/shinythemes
ggplot2	To create plots and graphics	(Wickham 2016)	https://github.com/tidyverse/ggplot2
phyloseq	To explore microbiome profiles for alpha and beta diversity	(McMurdie and Holmes, 2013)	https://github.com/joey711/phyloseq
ggpubr	Do the graphics for the correlation plot	(Kassambara 2022)	https://github.com/kassambara/ggpubr
vegan	The beta diversity orientation methods	(Oksanen et al., 2017)	https://github.com/vegandevs/vegan
ggfortify	To plot PCA in 2D	(Tang et al., 2016)	https://github.com/sinhrks/ggfortify
plotly	To plot PCA in 3D	(Sievert 2020)	https://github.com/plotly/plotly.R
ggplotify	Convert plot to ggplot object	(Yu 2021)	https://github.com/GuangchuangYu/ggplotify
reshape2	To transform data into a different structure	Wickham H (2007)	https://github.com/hadley/reshape
tibble	To convert row names to column	(Müller and Wickham 2022).	https://github.com/tidyverse/tibble
scales	Scale functions visualization in a heatmap	(Wickham and Seidel, 2022)	https://github.com/r-lib/scales
dunn.test	Multiple comparisons using rank sums (used in the Kruskal- Wallis test)	(Dinno 2017)	https://github.com/cran/dunn.test
tidyr	Creating tidy data, where each column is a variable, each row is an observation	(Wickham and Girlich 2022)	https://github.com/tidyverse/tidyr
dplyr	Data manipulation: adds new variables that are functions of existing variables	(Wickham et al., 2022)	https://github.com/tidyverse/dplyr
devtools	To install several R packages	(Wickham et al., 2022)	
patchwork	Adding multiple plots together	(Pedersen 2022)	https://github.com/thomasp85/patchwork
RColorBrewer	To select the colors	(Neuwirth 2022)	<u>https://cran.r-</u> project.org/web/packages/RColorBrewer/index.html
zip	To extract the output to zip file	(Gábor Csárdi 2024)	https://cran.r-project.org/web/packages/zip/index.html
GGally	Creating correlation plots	(Schloerke et al., 2022)	https://github.com/ggobi/ggally
BiocManager	To install Bioconductor packages	(Morgan 2022)	https://bioconductor.org/packages/BiocVersion/
ComplexHeatmap	Creating heatmap	(Gu 2022)	https://bioconductor.org/packages/ComplexHeatmap/
qvalue	Estimates for false discovery used in statistical analysis	(Storey et al., 2022)	https://bioconductor.org/packages/qvalue/

Table S1. List of R packages used to develop this application

DESeq2	Statistical analysis for two groups or sets	(Love et al., 2014)	https://bioconductor.org/packages/DESeq2/
edgeR	Statistical analysis for two groups or sets	(Robinson et al., 2010)	https://bioconductor.org/packages/edgeR/
limma	Statistical analysis for two groups or sets	(Ritchie et al., 2015)	https://bioconductor.org/packages/limma/
metagenomeSeq	Statistical analysis for two groups or sets	(Paulson et al., 2013)	https://bioconductor.org/packages/metagenomeSeq/
lefser	Statistical analysis for two groups or sets	(Segata et al., 2011)	https://github.com/waldronlab/lefser
maaslin3	Statistical analysis for two groups or sets	(Nickols et al., 2024)	https://github.com/biobakery/biobakery/wiki/maaslin3
bluster	Used in UMAP for creating k-means and graph-based clustering	(Lun 2022)	https://bioconductor.org/packages/bluster/
mia	Used for data wrangling in t-SNE and UMAP	(Ernst et al., 2022)	https://bioconductor.org/packages/mia/
scater	Creating t-SNE and UMAP plots	(McCarthy et al., 2017)	https://bioconductor.org/packages/scater/
microbiome	Utilities for microbiome analysis	(Lahti et al., 2019)	https://bioconductor.org/packages/microbiome/
microbiomeutilities	Pairwise comparison using a non-parametric test (Wilcoxon test) in alpha diversity	(Shetty and Lahti, 2022)	https://github.com/microbiome/microbiome/

Data preparation

This section will introduce how to prepare input data sets: read counts with complete taxonomy (kingdom to species level) and corresponding metadata.

Counts and metadata input formats

Our application will accept the files in .txt, .tsv, or .csv format. The user can directly upload level 7 of Qiime2 results generated using Greengenes or Silva. Likewise, it will support MEGAN data from the whole metagenome sequence (remove the metadata column if it is included in the level7.csv file from Qiime2). If the user has a different output format, they need to prepare their data count file and metadata for analysis. For the file preparation, please refer to our example count data and metadata files from the upload files pages shown in **Figure S2** or example datasets from the GitHub repository (<u>https://github.com/GudaLab/MetaDAVis</u>). The metadata files contain two columns. The first column contains the Samples which need to match the sample IDs in the count data input (**Figure S2**). The second column is Condition which indicates any user-specified categorial variable, such as "case" and "control" (two or multiple groups).

MetaDAVis	Upload files	Distribution -	Diversity -	Dimension reduction -	▼ Correlation ▼ Heatmap Differential abundance ▼				
					Summary Taxonomy table Metadata table No. of conditions Counts in samples				
Upload f	iles				Download example data				
Select Input f	ormat				Qiime2 format				
Qiime2				-	Qiime2 Greengenes Output format				
The file accen	ts tyt or tsy (Mer	an and users own	file) or csv f	ormats (Oiime2)	Qiimez metadata for greengenes Example data				
Upload count	t file			Fields separated by	Qlime2 metadata for Silva MEGAN output format				
Browse	No file selected			tab 💌	Megan WGS output format				
					Taxa count file (Prepare your input accourding to our count and metadata format)				
Linioad meta-	data			Fields senarated by	Count files format				
Browse	No file selected			tab	HICKOULA				
Diowide	No nie oblocieu				After the data is uploaded and checked, it will be displayed in the table summary be				
Change the la									
	evel to display				Number of OTUs				
O Phylum					Matadata				
O Class					Metadata				
Order									
Family									
⊖ Genus									
○ Species									
Submit									

Figure S2: Example data were provided for Qiime2, MEGAN output format. If users have a different output format, prepare the files according to the taxa count file format

Run MetaDAVis

This section will introduce step-by-step instructions for each functional analysis using the example dataset provided at the MetaDAV is GitHub repository (<u>https://github.com/GudaLab/MetaDAV is</u>). Using our application, users can download the plot in publication quality in seven formats: JPG, TIFF, PDF, SVG, BMP, EPS, and PS. The summary tables were displayed using the DT package to visualize up to 100 rows (default 10) and download the table in .csv files.

This tutorial is described with the MEGAN output files (Megan WGS output format and Megan metadata) available on the Upload files page.

Data upload and their summary

In the "Upload files" tab, the user must select the file format and click the browse button to upload the count and metadata. Then, select the taxonomy level and click the submit button to analyze the metagenomic data. The summary page will provide the following details.

Summary of count data and metadata, Taxonomy tables, metadata tables, No. of conditions, count in samples (Figure S3 - S7).

Input files & format (txt, tsv, Upload files tab, co The file accepts txt or tsv or sv formats Select Input format Megan Upload count file Browse Megan_WGS_output tsv Upload complete Upload meta-data	csv) omma, space	Summary table Netadata table No. of Conditions Counts in samples Download example data Qiime2 format Qiime2 Greengenes Output format Qiime2 metadata for gireengenes Qiime2 metadata for silva MEGAN output format Megan WGS output format Megan wUSS output format Megan acount file (Prepare your input accounding to our count and metadata format) Count files format Metadata
Browse Megan_WGS_metadata.tsv Upload complete	tab	After the data is uploaded and checked, it will be displayed in the table summary below.
Choose the level to display Kingdom Phylum Class Order Family Genus Species	or analysis	Number of OTUS Summary of count data and metadata There are 170 bacterial taxa at the Family level. Metadata Number of CD: 88, Number of HC: 21, Number of UC: 48
Submit		

Figure S3: Data upload page and their summary

Display the taxonomy counts for each samples									
Show 10 v entries							Sea	arch:	
	SRR5650021	SRR5650022	SRR5650023	SRR5650024	SRR5650025	SRR5650026	SRR5650027	SRR5650028	SRR5650029
f(Actinobacteria <phylum>)</phylum>	1	1	2	2	1	4	21	10	6
f(Actinobacteria)	5	7	9	5	3	7	30	8	5
f(Alphaproteobacteria)	0	0	0	0	0	0	0	0	0
f(Archaea)	0	0	0	0	0	0	0	0	0
f(Bacillales)	0	0	0	5	7	0	0	0	0
f(Bacilli)	2	6	9	3	3	2	4	2	2
f(Bacteria)	906	1066	1021	1030	996	817	881	878	936
f(Bacteroidales bacterium 43_8)	0	0	0	0	0	0	0	0	0
f(Bacteroidales)	1318	863	837	743	844	1229	328	1254	880
f(Bacteroidetes)	109	86	90	81	82	116	31	92	83
Showing 1 to 10 of 170 entri	ies					Previous	1 2 3	4 5	17 Next

🛓 Download as csv

Summary Taxonomy table Metadata table No. of conditions Counts in samples

Figure S4: Summary of selected taxonomy table with their counts for each sample

Summary	Taxonomy table	Metadata table	No. of Conditions	Counts in samples							
Display the	metadata file										
Show 10 🗸	entries							Search:			
					Condition						
SRR5650021					UC						
SRR5650022					HC						
SRR5650023					HC						
SRR5650024					HC						
SRR5650025					HC						
SRR5650026					HC						
SRR5650027					HC						
SRR5650028					HC						
SRR5650029					HC						
SRR5650030					HC						
Showing 1 to 10) of 157 entries					Previous	1 2	3 4	5	16	Next
📥 Download	as csv										

Figure S5: Summary of metadata table

Summary	Taxonomy table	Metadata table	No. of conditions	Counts in samples				
Display the	number of condit	ion based on yo	our metadata					
Show 10 v	entries				Search:			
		Condition						
1		UC						
2		HC						
3		CD						
Showing 1 to 3	of 3 entries					Previous	1	Next

🛓 Download as csv

Figure S6: Display the no. of conditions based on the metadata

Summary	Taxonomy table Metadata table	No. of conditions	Counts in samples					
Display the t								
Show 10 🗸	entries				Sear	ch:		
	Samples						Total_c	ounts 0
1	SRR5650021							12054
2	SRR5650022							12066
3	SRR5650023							12078
4	SRR5650024							12068
5	SRR5650025							12079
6	SRR5650026							12057
7	SRR5650027							12078
8	SRR5650028							12076
9	SRR5650029							12079
10	SRR5650030							12071
Showing 1 to 10) of 157 entries			Previous	1 2 3	4 5	16	Next
🛓 Download a	as csv							

Figure S7: Display the total no. of counts based on the count file

After uploading the count data, metadata file and pre-selected level, the inputs will be automatically saved for accessing the distribution, diversity, dimension reduction, correlation, heatmap and differential abundance tabs.

Distribution:

Under the distribution tab, user can visualize their taxa (two to 100) by grouped (based on the Condition) or individual (based on the individual samples).

Distribution based on groups:

Users need to select the plot types, no. of bacterial taxa to display, the image output format, and click the submit button to visualize the plot (Figure S8 - S10).

MetaDAVis Upload files	Distribution -	Diversity 👻	Dimension reduction -	Correlation -	Heatmap	Differential abundance -	
Distribution of top	Group Individual Dacterial ta	Subsectior xa (groups	3)	1			
Selected input							
Megan_WGS_output.tsv			•	> Selecte	d file bas	ed on the input	
Abundance (%) - stacked ba Abundance value - stacked I Relative frequency - stacked Colors	r Dar Dif	ferent types	s of plots				
RdYIBu			•	✓ → Colors selection			
Number of top bacterial taxa ((Max = 100)						
15				> Select	upto two	to 100 taxa's (default is	
Output image format							
JPG		•	> Select	file form	ats (JPG, TIFF, PDF, S		
Submit				BMP,	EPS, and	PS)	

Figure S8: Input selection for group distribution

Downloading images in various formats

Users can download the figure with preferred dimensions up to 49 inches of height and weight in multiple image formats (JPG, TIFF, PDF, SVG, BMP, EPS, and PS) to download the result in publication quality and the journal with a recommended size and dpi (resolution: 72 to 1000). This menu was incorporated into all the tabs, which contain figures.

Figure height (upto 49 inces)	Figure width (upto 49 inces)	Figure resolution (dpi:72 to 300)
8	8	300
▲ Download plot		

Figure S9: Download the plot in preferred dimensions for publication in multiple image formats.

Figure S10: displays the top a) 15 relative abundance percentages, b) 15 relative abundance values, c) 50 relative abundance frequencies grouped by the list of conditions in metadata

Distribution based on induvial:

Users need to select the plot types, no. of bacterial taxa to display, image output format, and click the submit button to visualize the plot (Figure S11 - S12).

Distribution of top bacterial taxa (samples)	
Selected input	
Megan_WGS_output.tsv	✓ Selected file based on the iput
Types of plot Abundance (%) - stacked bar Abundance value - stacked bar Relative frequency - stacked bar Different types of plots	
Colors	
RdYIBu	✓ → Colors selection
Number of top bacterial taxa (Max = 100)	
15	Select upto two to 100 taxa's (default is 15)
Output image format	
JPG	✓ → Select file formats (JPG, TIFF, PDF, SVG,
Submit	BMP, EPS, and PS)

Figure S11: Input selection for individual distribution

Figure S12: displays the top 15 a) relative abundance percentages, b) relative abundance values, c) relative abundance frequencies for the given samples in metadata

Diversity

Under the distribution tab, there are two subsections (Figure S13): 1. Alpha and 2. Beta diversity.

Alpha diversity

Alpha diversity was calculated by the phyloseq package (McMurdie and Holmes, 2013). Users can visualize the alpha diversity by choosing any one of the methods (Figure S13), such as Observed, Chao1(Figure S14 a), ACE, Shannon (Figure S14 b), Simpson, Inverse Simpson, Fisher or All_combined (combined all the listed methods) (Figure S14 c). The users can also get the diversity plot with the p-values (either values or *) (Figure S14 d), using Wilcoxon tests (from the microbiomeutilities package) (Shetty and Lahti, 2022) considering each pair of groups. Once the output plot types and the image format are selected, then click the submit button to calculate diversity. Users can also get the alpha diversity for each sample by clicking the summary table tab (Figure S15).

MetaDAVis Upload	files Distribution -	Diversity -	Dimension redu	ction -	Correlation -	Heatmap	Differential abundance -	
		Alpha Beta	Subsection		Alpha div	versity plot	Summary Table	_
Alpha diversity					Boxplo	ot		
Megan_WGS_output.t	SV			•				
Select Method					Olara		1 ACE Channel	C :
All_Combined				•	→ Invers	e Simpson	n, Fisher or All co	mbined
Wilcoxon test Yes (show's Pvalue)_ No Show * 	 ► (0, 0.0001, 0.001, 0 ► ("****", "***", "** 	0.01, 0.05, Inf)			(comb	ined all th	ae listed methods)	
Types of plot Box plot Violin plot	Different	types of plo	ot					
Colors								
RdYIBu				•	> Colors	Selection	n	
Output image format								
JPG				•]-	→ Select	file form	ats (JPG, TIFF, PD	OF, SVG,
Submit					BMP,	EPS, and	PS)	

Figure S13: Input selection for alpha diversity

Figure S14. The box plot shows the alpha diversity, which is calculated based on the a) chaol without p-value, b) Shannon index with p-value (shows: "****", "**", "**", "s"), c) using all the methods with p-value, d) Plotted in violin with p-value (shows: "****", "***", "**", "**", "**", "s").

Result - alpha diversity estimates for each metagenome

Show 10 v entries								Search:		
	Observed 🗘	Chao1 🌲	se.chao1 🍦	ACE 🌲	se.ACE 🍦	Shannon 🍦	Simpson 🗘	Inv	Simpson 🗘	Fisher 🗘
SRR5650036	55	55.25	0.74	55.6	3.49	2.21	0.76		4.12	7.44
SRR5650037	51	51	0.25	51.24	3.44	2.6	0.89		9.03	6.82
SRR5650038	42	42	0.16	42.28	2.81	2.39	0.85		6.64	5.45
SRR5650039	59	62.33	4.12	61.13	3.73	2.73	0.91		10.59	8.07
SRR5650040	47	48	2.33	47.42	3.19	2.6	0.89		9.39	6.2
SRR5650041	48	48	0.12	48.27	3.38	2.52	0.89		8.98	6.36
SRR5650042	58	59.5	2.23	59.86	3.39	2.49	0.87		7.87	7.91
SRR5650043	59	59.33	0.92	59.67	3.49	2.6	0.89		8.72	8.07
SRR5650044	56	59	4.17	57.73	3.56	2.36	0.85		6.7	7.6
SRR5650065	32	32.5	1.29	32.72	2.77	1.9	0.78		4.56	3.99
Showing 1 to 10 of 157 entrie	es					Prev	rious 1 2	3 4	5	16 Next

🛓 Download as csv

Figure S15: Summary table of alpha diversity for each sample

Beta diversity

Beta diversity was calculated based on phyloseq (unlist(distanceMethodList)) (McMurdie and Holmes, 2013) and vegan (Oksanen et al., 2017) packages. Users can visualize the alpha diversity by choosing any one of the methods. In our application, we have integrated 42 distance metrics. Users can use any one of the following methods such as (bray, jaccard, manhattan, euclidean, canberra, kulczynski, gower, altGower, morisita, horn, mountford, raup, binomial, chao, cao, w, -1, c, wb, r, I, e, t, me, j, sor, m, -2, co, cc, g, -3, l, 19, hk, rlb, sim, gl, z, maximum, binary and minkowski) (**Figure S16**). In addition, we have incorporated six different orientation methods using the vegan package, such as (PCoA, NMDS, DCA, CCA, RDA, and MDS) (**Figure S16**). The result will be displayed in the box (**Figure S17 a**) and orientation plot (**Figure S17 b**) with the summary table (**Figure S18**), which contains distance matrics between all the samples.

Figure S16: Input selection for beta diversity

Figure S17 a) The diversity metrics (bray) were plotted in the box plot b) the diversity matrics (bray) with PCoA orientation were plotted.

how 10 v e	ntries							Search:		
	SRR5650036	SRR5650037	SRR5650038	SRR5650039	SRR5650040	SRR5650041	SRR5650042	SRR5650043	SRR5650044	SRF
SRR5650036	0	0.56	0.35	0.47	0.52	0.49	0.67	0.64	0.71	
SRR5650037	0.56	0	0.3	0.2	0.32	0.14	0.4	0.38	0.44	
SRR5650038	0.35	0.3	0	0.23	0.22	0.21	0.41	0.39	0.45	
SRR5650039	0.47	0.2	0.23	0	0.26	0.16	0.37	0.35	0.42	
SRR5650040	0.52	0.32	0.22	0.26	0	0.21	0.35	0.32	0.38	
SRR5650041	0.49	0.14	0.21	0.16	0.21	0	0.43	0.4	0.46	
SRR5650042	0.67	0.4	0.41	0.37	0.35	0.43	0	0.1	0.1	
SRR5650043	0.64	0.38	0.39	0.35	0.32	0.4	0.1	0	0.17	
SRR5650044	0.71	0.44	0.45	0.42	0.38	0.46	0.1	0.17	0	
SRR5650065	0.77	0.56	0.53	0.54	0.5	0.56	0.34	0.39	0.25	
howing 1 to 10 o	of 157 entries						Previous 1	2 3 4	5 16	N
🛓 Download as	CSV									
Result - Pe	ermutation	test for add	onis under re	educed mo	del			Search:		
	Df 🗄		SumC	fSqs 🔶		R2 🗄			F ÷	Pr(>
									54070	
Model	2	2	0.7827316811	354081	0.06	589320924942112		5.4316884990	51073	
Model Residual	2	2	0.7827316811	354081	0.06	589320924942112 341067907505788		5.4316884990	51073	

Dimension reduction

Under this tab, there are three subsections (**Figure S19**) 1. Principal Component Analysis (PCA) 2D and 3D, 2. t-distributed Stochastic Neighbor Embedding (t-SNE) and 3. Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP).

PCA-2D & 3D

The ggfortify (Tang et al., 2016) was used to plot the PCA-2D. The users must select the text label and its size, frame, and output image format and click the submit button (**Figure S19**). The output will be displayed in a PCA-2D plot (**Figure S20**) with a summary table (**Figure S21**). For the PCA-3D plot, we used plotly to create the plot. In this section, the user must click the submit button to see the PCA plot in 3D. The plotly has its function to export the image in png format (**Figure S22**). The PCA summary table contains the PC1, PC2 and PC3 coordinates (**Figure S23**).

MetaDAVis Upload files Dist	ribution - Diversity -	Dimension reduction \bullet	Correlation - Heatmap Differential abundance
PCA 2D		PCA-2D PCA-3D t-SNF	Subsection PCA 2D Plot Summary Table
Selected input		UMAP	Principal Component Analysis
Megan_WGS_output.tsv		•	
Label			
FALSE			→ If true it will display sample labels
Label size			
3			Sample label size
Frame			
FALSE		•	→ If true display circular frames
Colors			
RdYIBu		•]	→ Color selection
Output image format			
JPG		•	 Select file formats (JPG, TIFF, PDF, SVG BMP, EPS, and PS)
Submit			

Figure S19: Input selection for PCA plot.

Figure S20. Displays PCA-2D plot with a) no labels and no frame, b) no labels and with a frame, c) with labels and no frame, d) with labels and frame.

PCA 2D Plot Summary Table		
Show 10 v entries		Search:
	PC1	PC2 Condition
SRR5650036	0.15	-0.04 CD
SRR5650037	-0.06	-0.12 CD
SRR5650038	0.06	-0.02 CD
SRR5650039	-0.01	-0.05 CD
SRR5650040	0	0.01 CD
SRR5650041	-0.01	-0.08 CD
SRR5650042	-0.07	0.06 CD
SRR5650043	-0.05	0.05 CD
SRR5650044	-0.09	0.09 CD
SRR5650065	-0.14	0.13 CD
Showing 1 to 10 of 157 entries		Previous 1 2 3 4 5 16 Next

Figure S21. Summary table for PCA. Each sample coordinate position was shown in PC1 and PC2.

Figure S22. Displays PCA-3D plot. Plotly provides a default menu option in the top-right corner to export the plot.

PC/	A 3D Plot	Summary Table							
Show	10 🗸 e	ntries				Search:			
	:	Samples	PC1	PC2	PC3	Condition			
1	\$	SRR5650021	1441.84	-117.4	-187.2	UC			
2	\$	SRR5650022	-2127.69	3591.86	-349.4	HC			
3	\$	SRR5650023	-1947.49	2618.18	-98.64	HC			
4	\$	SRR5650024	-2028.39	2327.14	-137.08	HC			
5	\$	SRR5650025	-2789.16	4038.58	-300.38	HC			
6	\$	SRR5650026	1924.27	-104.94	-140.55	HC			
7	\$	SRR5650027	-1569.94	-1140.54	613	HC			
8	\$	SRR5650028	623.74	-275.16	241.54	HC			
9	\$	SRR5650029	179.38	-453.86	-5.03	HC			
10	\$	SRR5650030	-200.31	-501.6	417.47	HC			
Showi	ng 1 to 10 c Iownload as	of 157 entries			Previous 1 2	3 4	5	16	Next

Figure S23. Summary table for PCA-3D. Each sample coordinate position was shown in PC1, PC2 and PC3.

t-SNE

The t-SNE was plotted using a scater package (McCarthy et al., 2017). We have incorporated six methods from the scater to plot the t-SNE: counts, rclr, hellinger, pa, rank, and relabundance in two and three dimension orientations (**Figure S24**). After selecting methods, orientation and output image format, click submit to visualize the t-SNE plot (**Figure S25 a & b**) and their summary tables (**Figure S26 a & b**).

t-SNE		
Selected input		
Megan_WGS_output.tsv	-	
Select method		
counts	-	> Select method (counts, rclr, hellinger, pa,
Select dimension to display		rank, and relabundance)
2	-	→ Select dimension (2 or 3)
Colors		
RdYIBu	•	→ Color selection
Output image format		
JPG	•	→ Select file formats (JPG, TIFF, PDF, SVG,
Submit		BMP, EPS, and PS)

Figure S24: Input selection for t-SNE plot

Figure S25. The t-SNE plot in a) two dimensions, b) three dimensions

w 10 🗸 entries											Searc	n			
			X .		Y ÷	colour_by								or	er_b
R5650036			7.45		-6.26	CD									
R5650037			-7.02		1.91	CD									
(R5650038			4.32		-3.58	CD									
(R5650039			-5.42		1.04	CD									
(R5650040			-2.13		0.77	CD									
(R5650041			-5.96		1.17	CD									
(R5650042			0.37		4.6	CD									
(R5650043			0.43		4.33	CD									
(R5650044			0.16		5.47	CD									
(R5650065			-0.17		7.18	CD									
-SNE Plot Summ	ntries							Previous	1	2	3	4	5	16	
-SNE Plot Summ yw 10 v entries	ntries nary Table							Previous	1	2	3 Searc	4 h:	5	16	
wing 1 to 10 of 157 er Download as csv SNE Plot Summ Sw 10 v entries	ntries nary Table xvar	- yvar		x ÷	у :	X1 ‡	X2 ÷	Previous	colou	2 r_by	3 Searc	4 h:	5	16 ore	<u>۲_</u>
ving 1 to 10 of 157 er Download as csv SNE Plot Summ w 10 v entries RR5650036	ntries nary Table xvar TSNE 1	tyvar TSNE 2		x 0 2.91	y ÷ 11.81	X1 : 11.81	X2 = 2.91	Previous x3 = 2.98	colour CD	2 r_by	3 Searc	4 h:	5	16 orc	 ۶۲_
ving 1 to 10 of 157 er Download as csv SNE Plot Summ sw 10 v entries RR5650036 RR5650037	ntries nary Table xvar TSNE 1 TSNE 1	yvar TSNE 2 TSNE 2		x = 2.91 4.93	y ° 11.81 -6.68	X1 ° 11.81 -6.68	x2 ÷ 2.91 4.93	Previous x3 : 2.98 1.96	colour CD CD	2 r_by	3 Searc	4	5	16	۶r_
ving 1 to 10 of 157 er Download as csv SNE Plot Summ w 10 → entries RR5650036 RR5650037 RR5650038	nary Table	yvar TSNE 2 TSNE 2 TSNE 2		x = 2.91 4.93 1.26	y ≏ 11.81 -6.68 6.48	x1 11.81 -6.68 6.48	x2 = 2.91 4.93 1.26	Previous X3 : 2.98 1.96 2.73	colour CD CD CD	2 r_by	3 Searc	4 h:	5	orc	۶r_
ving 1 to 10 of 157 er Download as csv SNE Plot Summ w 10 v entries RR5650036 RR5650037 RR5650038 RR5650039	ntries nary Table Xvar TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1	 yvar TSNE 2 TSNE 2 TSNE 2 TSNE 2 		x 2.91 4.93 1.26 3.84	y : 11.81 -6.68 6.48 -4.39	X1 : 11.81 -6.68 6.48 -4.39	x2 = 2.91 4.93 1.26 3.84	Previous x3 : 2.98 1.96 2.73 1.22	CD CD CD CD CD CD	2 r_by	3 Searc	4 h:	5	16	۶r_
ving 1 to 10 of 157 er Download as csv SNE Plot Summ bw 10 → entries RR5650036 RR5650038 RR5650039 RR5650040	htries hary Table xvar TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1	yvar TSNE 2		x 2.91 2.91 4.93 1.26 3.84 0.62	y ° 111.81 -6.68 6.48 -4.39 -1.56	x1 : 111.81 -6.68 6.48 -4.39 -1.56	X2 2.91 4.93 1.26 3.84 0.62	Previous x3 : 2.98 1.96 2.73 1.22 -0.78	CD CD CD CD CD CD CD	2	3 Searci	4 h:	5	orc	۶r_
ving 1 to 10 of 157 er Download as csv -SNE Plot Summ pw 10 v entries RR5650036 RR5650037 RR5650039 RR5650040 RR5650041	nary Table xvar TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1	yvar TSNE 2 TSNE 2 TSNE 2 TSNE 2 TSNE 2 TSNE 2 TSNE 2		x 3 2.91 4.93 1.26 3.84 0.62 4.43	y 2 11.81 -6.68 6.48 -4.39 -1.56 -4.98	x1 1 11.81 -6.68 -6.48 -4.39 -1.56 -4.98	x2 = 2.91 4.93 1.26 3.84 0.62 4.43	Previous x3 - 2.98 1.96 2.73 1.22 -0.78 1.57	CD CD CD CD CD CD CD CD CD	2 r_by	3 Search	4 h:	5	orc	er_l
ving 1 to 10 of 157 er Download as csv SNE Plot Summ w 10 v entries RR5650036 RR5650038 RR5650039 RR5650040 RR5650041 RR5650042	htries hary Table Xvar TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1	yyar TSNE 2		x = 2.91 4.93 1.26 3.84 0.62 4.43 -4.52	y ° 111.81 -6.68 6.48 -4.39 -1.56 -4.98 -4.36	x1 ° 111.81 -6.68 6.48 -4.39 -1.56 -4.98 -4.98	x2 - 2.91 4.93 1.26 3.84 0.62 4.43 -4.52	Previous X3 1 2.98 1.96 2.73 1.22 -0.78 1.57 -2.53	Colour CD CD CD CD CD CD CD CD CD CD	2 r_by	3 Searcl	4 h:	5	16	er_
ving 1 to 10 of 157 er Download as csv SNE Plot Summ ow 10 ventries RR5650036 RR5650037 RR5650038 RR5650039 RR5650040 RR5650041 RR5650042 RR5650043	htries hary Table xvar TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1	yvar TSNE 2		x 2.91 4.93 1.26 3.84 0.62 4.43 -4.52 -4.21	y ° 111.81 -6.68 6.48 -4.39 -1.56 -4.98 -4.98 -4.36 -3.96	x1 1 11.81 -6.68 6.48 -4.39 -1.56 -4.98 -4.98 -4.36 -3.96	x2 1 2.91 4.93 1.26 3.84 0.62 4.43 -4.52 -4.21	Previous X3 : 2.98 1.96 2.73 1.22 -0.78 1.57 -2.53 -2.76	colour CD CD CD CD CD CD CD CD CD CD CD	2 r_by	3 Search	4 h:	5	16	er_
ving 1 to 10 of 157 er Download as csv SNE Plot Summ pw 10 → entries RR5650036 RR5650037 RR5650039 RR5650039 RR5650040 RR5650041 RR5650043 RR5650043 RR5650044	htries hary Table Xvar TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1 TSNE 1	yvar TSNE 2 TSNE 2		x 1 2.91 4.93 1.26 3.84 0.62 4.43 -4.52 -4.52 -4.21 -4.98	y 2 11.81 -6.68 6.48 -4.39 -1.56 -4.98 -4.36 -4.36 -3.96 -5.48	x1 1.81 11.81 -6.68 -6.48 -4.39 -1.56 -4.98 -4.36 -3.96 -3.96 -5.48	x2 : 2.91 4.93 1.26 3.84 0.62 4.43 -4.52 -4.21 -4.98	Previous x3 - 2.98 1.96 2.73 1.22 -0.78 1.57 -2.53 -2.76 -2.4	colour CD CD CD CD CD CD CD CD CD CD CD CD	2 r_by	3 Searci	4 h:	5	orc	er_

UMAP

The UMAP was incorporated using two packages, scater (McCarthy et al., 2017) and bluster (Lun, 2022). We have incorporated six methods from the scater to plot the UMAP: counts, rclr, hellinger, pa, rank, and relabundance. The cluster package was used to plot the graph using cluster-based with the selected k-value (Figure 27). After selecting methods, k-value and output image format, click submit to visualize the UMAP plot (Figure S28 a & b) and their summary tables (Figure S29 a & b).

Figure S27: Input selection UMAP plot

Figure S28. a) UMAP plot based on the selected method (counts), colored by Condition from metadata, b) Plot colored based on cluster-based using the selected K-value

(-)		
18	JMAP	PK
()		

```
Plot Summary Table based on condition Summary Table based on cluster
```

Show 10 ∨ entries						Search:			
	Χ.	Y â	colour_by					ord	er_by 🗘
SRR5650036	-0.7	-4.34	CD						1
SRR5650037	5.76	-0.31	CD						2
SRR5650038	-1.8	-3.04	CD						3
SRR5650039	4.94	-0.37	CD						4
SRR5650040	-1.4	1.14	CD						5
SRR5650041	5.11	-0.3	CD						6
SRR5650042	-1	2.89	CD						7
SRR5650043	-1.07	2.79	CD						8
SRR5650044	1.3	4.93	CD						9
SRR5650065	1.61	5.45	CD						10
Showing 1 to 10 of 157 entries				Previous	1 2	3 4	5	16	Next

🛓 Download as csv

(b) UMAP Plot Summary Table based on condition Summary Table based on cluster

Show 10 - entries						Search:			
	x ‡	Y Ĉ	colour_by					or	der_by 0
SRR5650036	-0.7	-4.34	7						1
SRR5650037	5.76	-0.31	1						2
SRR5650038	-1.8	-3.04	4						3
SRR5650039	4.94	-0.37	1						4
SRR5650040	-1.4	1.14	6						5
SRR5650041	5.11	-0.3	1						6
SRR5650042	-1	2.89	3						7
SRR5650043	-1.07	2.79	3						8
SRR5650044	1.3	4.93	2						9
SRR5650065	1.61	5.45	2						10
Showing 1 to 10 of 157 entries				Previous	1 2	3 4	5	16	Next

Figure S29. Summary table for UMAP based on a) conditions from metadata using the selected method (counts), b) Cluster-based using K-value

Correlation analysis

Under this tab are two subsections: 1) Taxa-based and 2) Sample-based correlation (Figure S30).

Taxa-based correlation

The taxa-based correlation plot was incorporated using the GGally (Schloerke et al., 2022) package with the ggcorr function to call three different methods: pearson, kendall and spearman. Users can check the correlation for each condition separately or select multiple options together using the dropdown menu. Once the method, label size and output format are selected, click submit (**Figure S30**) to visualize the taxa plot (**Figure S31**) and summary table (**Figure S32**) for the selected taxonomy on the file upload page. We have used ggpubr (Kassambara 2022) to do our graphics.

MetaDAVis Upload file	s Distribution -	Diversity 👻	Dimension redu	ction -	Correlation -	Heatmap	Differential abundance 👻
			3.5.2		Taxa-based Sample-based	Subsect	ion ummary Table
Compute correla condition(s)	tion betweer	i taxa for	selected	_			
Selected input							
Megan_WGS_output.tsv				•			
Select condition(s)							
CD					→ Enter o	ne or mu	ltiple conditions
Correlation methods							
o pearson	Methods use	ed for anal	vsis				
O kendall	Wiethous us		y 515				
O spearman							
Label size					5.7.4	с ·	
3				\$	Enter th	ne font si	ze to display the sam
Geom shapes							
circle				-	→ Select s	hapes to	display
Output image format							
JPG				•	→ Select f	file forma	ats (JPG, TIFF, PDF,
					BMP, F	EPS, and	PS)
Submit							

Figure S30. Input selection for taxa-based correlation analysis

Figure S31. Taxa-based correlation plot using the pearson method

Corre	elation plot Summary Table						
Show	10 v entries			Search:			
	x	\$ У	÷	coe	efficient 🝦	lat	bel 🔶
1	pBlastocystidae.	pBacteria.			0.15		0.1
2	pEukaryota.	pBacteria.			-0.46		-0.5
3	pEukaryota.	pBlastocystidae.			0.09		0.1
4	pnull.	pBacteria.			-0.27		-0.3
5	pnull.	pBlastocystidae.			0.08		0.1
6	pnull.	pEukaryota.			0.73		0.7
7	puncultured_bacterium.	pBacteria.			-0.14		-0.1
8	puncultured_bacterium.	pBlastocystidae.			-0.06		-0.1
9	puncultured_bacterium.	pEukaryota.			0.02		0
10	puncultured_bacterium.	pnull.			0.05		0.1
Showing	g 1 to 10 of 136 entries	Previous 1	2	3 4	5	14	Next

Figure S32. Taxa-based correlation table using the pearson method

Sample-based correlation

The sample-based correlation plot was incorporated with a similar method used for taxa-based correlation. Sample-based correlations can be calculated separately for each group of samples under specific conditions or combined across conditions. Once the method, label size and output format are selected, click submit (Figure S33). It will display the correlation plot for samples provided in the metadata (Figure S34) and the summary table (Figure S35).

Compute correlation between samples		
Selected input		
Megan_WGS_output.tsv	•	
Select condition(s)		
UC HC CD		Enter one or multiple conditions
Correlation methods		
earson Methods used for analysis		
O kendali Wicthous used for analysis		
O spearman		
Label size		
3	\$	→ Enter the font size to display the sample labels
Geom shapes		
circle	•	→ Select the shapes to display
Output image format		
JPG	•	→Select file formats (JPG, TIFF, PDF, SVG,
Submit		BMP, EPS, and PS)

Figure S33. Input selection for sample-based correlation analysis

Figure S34. Sample-based correlation plot using the pearson method

Corr	relation plot Summary	Table	
Show	10 v entries		Search:
	x Å	У	♦ coefficient ♦ label ♦
1	SRR5650023	SRR5650022	0.99 1
2	SRR5650024	SRR5650022	0.97 1
3	SRR5650024	SRR5650023	1 1
4	SRR5650025	SRR5650022	1 1
5	SRR5650025	SRR5650023	0.99 1
6	SRR5650025	SRR5650024	0.97 1
7	SRR5650026	SRR5650022	0.99 1
8	SRR5650026	SRR5650023	1 1
9	SRR5650026	SRR5650024	0.99 1
10	SRR5650026	SRR5650025	0.99 1
Showir	ng 1 to 10 of 210 entries	Previous 1	2 3 4 5 21 Next

Figure S35. Sample-based correlation table using the pearson method

Heatmap

The heatmap was generated with ComplexHeatmap (Gu, 2022), scales (Wickham and Seidel, 2022) and ggplotify. The user modifies the heatmap according to their needs by selecting the label names, text size, and cladogram (Figure S36). Then select the output format and click the submit button to visualize the heatmap (Figure S37).

MetaDAVis	Upload files	Distribution -	Diversity -	Dimension reduction -	Correlation -	Heatmap	Differential abundance
					Heatmap	using relat	ive abundance
Heatmap	- relative	abundanc	е				
Selected input	t)						
Megan_WGS	_output.tsv						
Clustering met	thod rows						
complete				· · ·	→ Use clı	ustering n	nethods single,
Clustering met	thod columns				comple	ete, avera	ge (UPGMA),
complete					(WPGI	ty (WPG. MC) and	MA), median
Normalization	method				(101	vic), and	
scale					Norma	lization r	nethods(scale, m
Colors					row no	ormalıza	tion, column
RdYIBu				•	→ Colors	selection,	and none
Show row nam	nes						
TRUE				•	→ If true	display r	ow names
Row name size	e						
7				<u></u>	→ Size of	f the row	names
Show column	names						
TRUE				•	→ If true	display co	olumn names
Column name	size						
7					→ Size of	the colu	nn names
Show row clad	logram						
TRUE				•	→ If true	display ro	ow cladogram
Show column	cladogram						
TRUE				-	→ If true	display c	olumn cladogram
Output image	format						
JPG					→ Select	file form	ats (JPG, TIFF, P
Submit					BMP,	EPS, and	IPS)
Submit							

Figure S36. Input selection for heatmap analysis

Figure S37. The heatmap for the selected taxonomy level on the upload page shows sample names in rows and family names in columns with a cladogram. Scale values represent the colors in the heatmap and groups represent the no. of conditions in the metadata file

Differential abundance

In differential abundance, we have two subsections: Two groups and Multiple groups (Figure S38).

Two groups

The two group methods analyze one set of control and case samples from the metadata. To analyze the metagenome data, we have incorporated six different methods: Wilcoxon Rank Sum test, t-test: Two sample t-test, metagenomeSeq (Paulson et al., 2013), DESeq2 (Love et al., 2016), Limma-Voom (Ritchie et al., 2015) and edgeR (Robinson et al., 2010) (Figure S38). For the Wilcoxon Rank Sum test (wilcox.test) and t-test (t.test) statistical analysis, we have converted the raw count value to relative frequency using the formula (Relative Frequency = (Subgroup frequency/ Total frequency) *100)). For metagenomeSeq, DESeq2, Limma-Voom and edgeR, Linear Discriminant Analysis Effect Size (lefser) and MaAsLin3 (Microbiome Multivariable Association with Linear Models) into our tool. We have used their package algorithm to find the significant taxonomy. MaAsLin 3 generates multiple tables and figures, and we provide these result files in a compressed zip format for ease of access.

Users must select two different conditions in 1 and 2 (it was a pop-up based on your metadata file, which you uploaded on the upload page). This section uses only two groups for the comparison (HC vs. CD). Then, users need to select the test correction method, either Benjamini-Hochberg FDR or P-value; also, they can adjust the FDR or P-value based on their needs (default is < 0.05). Finally, select any plot type and image format, then click the submit button (Figure S38) to visualize the grouped box plot (Figure S39a), individual box blot for each taxon (Figure S39b), volcano plot (Figure S39c) and the heatmap of significantly identified taxa (Figure S39d). We have similar input methods for all these six methods, and similar plots will be generated. Only the summary tables (Figure S40) columns will differ (Table 2).

MetaDAVis Upload files Distribution - Diversity - Dimension reduction -	Correlation - Heatmap	Differential abundance 👻	
	Summary Table PI	Two groups Wilcoxon Rank Sum test	Subsection
WIICOXON RANK Sum test Selected input	Result - OTUs	metagenomeSeq DESeq2	r
Megan_WGS_output.tsv		LEfSe	-
Select condition1	Download significan	MaAsLin3 Limma-Voom	п
HC	🛓 Download as csv	edgeR	D
Select condition2		Multiple groups	
CD		Kruskal-Wallis test	
Test correction	Select two diffe	rent conditions in 1	and 2
Benjamini-Hochberg FDR -	→ Select Benjamin	ii-Hochberg FDR or	P-value
FDR or Pvalue			
0.05	→ Color selection		
Colors			
RdYIBu	User can adjust	the value based on the	heir needs
Types of plot			
Grouped box plot Cale at all at tages to discuss.			
O Volcano plot Select plot type to display			
⊖ Heatmap			
Output image format			
JPG	→ Select file forma	ats (JPG, TIFF, PDF	, SVG,
Submit	BMP, EPS, and	PS)	

Figure S38. Input selection for the Wilcoxon Rank Sum test and similar input is needed for the remaining methods

Figure S39. Taxa were identified as significant by using the Wilcoxon Rank Sum test. The results were visualized in a) the grouped box plot; the x-axis represents the taxa and the y-axis represents the log10(relative frequency). b) An individual box plot for each taxon; the x-axis represents the Condition, the y-axis represents relative frequency, and c) the volcano plot; the x-axis represents the log10(mean relative abundance) and the y-axis represents Log2FC. d) the heatmap for significantly identified taxa. Likewise, similar plots were generated for the remaining methods.

Summary Table	Plot								
Result - OTU	s that were si	gnificantly differe	ent between two g	roups					
Total of 9 taxa we	re identified as sig	nificant>N	lumber of s	ignificant taxa	1				
Show 15 v entrie	s			Statistical	ly of significa	ant taxa	Search	h:	
	οτυ 💠	Present_in_no_of_CD	Present_in_no_of_HC	Mean_relative_frequency_CD ‡	Mean_relative_frequency_HC	All_mean_relative_frequency 🗍	Difference_between_means	fold_change 🕴	log2FC
f(Burkholderiales)	f(Burkholderiales)	82	16	0.1408	0.04773	0.16465395	0.0930561	0.339033866522715	-1.56049
f(Clostridiales bacterium 59_14)	f(Clostridiales bacterium 59_14)	2	4	0.002353	0.01932	0.01201491	-0.01697214	8.21432822117183	3.03814
f(Clostridiales bacterium)	f(Clostridiales bacterium)	52	17	0.09176	0.239	0.2112698	-0.1472677	2.60496984981031	1.38126
f(Firmicutes bacterium CAG:124)	f(Firmicutes bacterium CAG:124)	25	12	0.04932	0.2287	0.1636716	-0.1793694	4.63650997676616	2.21303
f(Firmicutes bacterium CAG:137)	f(Firmicutes bacterium CAG:137)	14	10	0.02279	0.06309	0.0543316	-0.040301	2.76856508421321	1.46913
f_(Firmicutes bacterium CAG:341)	f(Firmicutes bacterium CAG:341)	9	10	0.01759	0.05996	0.0475734	-0.0423672	3.40815769729214	1.76899
f(Firmicutes bacterium CAG:65_45_313)	f(Firmicutes bacterium CAG:65_45_313)	4	8	0.006023	0.04574	0.02889464	-0.03972091	7.59510127366221	2.92506
f_(Lawsonibacter)	f_(Lawsonibacter)	21	13	0.03031	0.07455	0.0675848	-0.0442429	2.45973294972764	1.29850
f_(Monoglobus)	f(Monoglobus)	13	10	0.01656	0.04851	0.04081865	-0.0319429	2.92836013715831	1.55009
				-					•
Showing 1 to 9 of 9 en	tries		Ex	port the sumn	nary tables in	CSV		Previous 1	Next
Download signific	ant		Download all		Download relative frequer	ncy	Total counts in each samp	les	
🛓 Download as csv			🛓 Download as csv		🛓 Download as csv		🛓 Download as csv		

Figure S40. Summary table for the Wilcoxon Rank Sum test. Likewise, similar tables were generated for the remaining methods.

Table S2. Output table column for the significant taxa by using various methods

	Wilcoxon						LefSe	MaAsLin3
	Rank Sum test	t-test	metagenomeSeq	DESeq2	Limma- Voom	edgeR		
OUT (Taxa)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Present_in_no_of_CD (Condition1)	\checkmark	✓	\checkmark					
Present_in_no_of_HC (Condition2)	\checkmark	\checkmark	\checkmark					
Counts_in_HC			\checkmark					
Counts in CD			\checkmark					
Mean /Mean_relative_frequency_CD (Condition1)	√	~			✓			
Mean / Mean_relative_frequency_HC (Condition2)	\checkmark	~			✓			
All_mean / All_mean_relative_frequency	\checkmark	✓	\checkmark	\checkmark	\checkmark			
Difference_between_means	\checkmark	~						
fold change	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
log2FC	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓		
PValue	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
FDR or q_value	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Scores							\checkmark	

Multiple groups

The multiple-group methods analyze more than two sets of conditions from the metadata, e.g. (Control, case1 and case2). In this tutorial, we have used Healthy control (HC), Crohn's Disease (CD) and Ulcerative Colitis (UC). To analyze the metagenome data, we have incorporated the Kruskal-Wallis test and ANOVA (Analysis of variance). The counts were converted to relative frequency, as mentioned above. Then we used the Kruskal-Wallis test (kruskal.test) and ANOVA (aov) function for statistical analysis. In addition, we also incorporated the Post-hoc test used to calculate the p-value for pairwise comparison between multiple groups, e.g. (CD vs. HC, CD vs. UC and HC vs. UC). For the Post-hoc test Dunn.test from dunn.test package used in the Kruskal-Wallis test. Likewise, TukeyHSD was used under ANOVA (**Figure S41**).

Users need to select the test correction method, either Benjamini-Hochberg FDR or P-value and the Post-hoc test; also, they can adjust the FDR or P-value based on their needs (default is < 0.05). Finally, select any plot type and image format, then click the submit button (Figure S41) to visualize the grouped box plot (Figure S42a), individual box blot for each taxon (Figure S42b) and heatmap (Figure S42c). We have similar input methods for the ANOVA methods. It also generates similar plots and summary tables (Figure S43).

Figure S41. Input selection for the Kruskal-Wallis test and similar input is needed for the ANOVA

Figure S42. a) Taxa were identified as significant by using the Kruskal-Wallis test. The results were visualized in the grouped box plot in which the x-axis represents the taxa and the y-axis represents the log10(relative frequency). b) A box plot for each taxon in which the x-axis represents the Condition and the y-axis represents the relative frequency c) the heatmap for significantly identified taxa. Likewise, similar plots were generated for the remaining methods.

Total of 43 taxa were identified as algorithment													
Show 10 v entries		Statistically of significant taxa									Search:		
	оти	Present_in_no_of_CD	Present_in_no_of_HC	Present_in_no_of_UC	Mean_relative_frequency_CD :	Mean_relative_frequency_HC	Mean_relative_frequency_U	C PValue 0	q_value	CD - HC	CD - : UC	HC - UC	
f_(Bacteroidales)	f(Bacteroidales)	87	21	48	5.55	7.29	7.807	0.0006911	0.004351	0.01976	0.0001376	0.2797	
f_(Bacteroidetes)	f_(Bacteroidetes)	85	21	48	0.4566	0.7568	0.6098	1.187e-05	0.0002522	3.703e-06	0.003219	0.01097	
f_(Bacteroidia)	f_(Bacteroidia)	74	21	48	0.09102	0.1487	0.1193	5.632e-05	0.0008704	1.224e-05	0.008595	0.01122	
f_(Betaproteobacteria)	f_(Betaproteobacteria)	52	17	25	0.009697	0.01183	0.005004	0.007927	0.03369	0.03326	0.02581	0.001191	
f(Bifidobacteriales)	f_(Bifidobacteriales)	45	21	26	0.02024	0.0363	0.04192	0.001133	0.00642	0.0001159	0.1957	0.002329	
f_(Burkholderiales)	f_(Burkholderiales)	77	21	46	0.1427	0.03983	0.1662	0.00048	0.003264	0.004776	0.01578	5.22e-05	
f(Candidatus Melainabacteria bacterium 35_41)	f(Candidatus Melainabacteria bacterium 35_41)	0	0	7	0	0	0.02589	0.0002586	0.002093	0.5	4.356e-05	0.003561	
f(Candidatus Melainabacteria)	f(Candidatus Melainabacteria)	0	0	7	0	0	0.004315	0.0002586	0.002093	0.5	4.356e-05	0.003561	
f(Clostridia)	f_(Clostridia)	88	21	48	0.3274	0.1676	0.2291	0.0002048	0.002048	1.907e-05	0.11	0.001433	
f(Clostridiales bacterium 41_21_two_genomes)	f(Clostridiales bacterium 41_21_two_genomes)	0	2	0	0	0.02287	0	0.001477	0.0081	0.0002456	0.5	0.0006072	
Showing 1 to 10 of 43 entries	Export the summary tables in csv Previous 1 2								3 4	5 Next			
Download significant		Downlo	ad all		Download relative frequency			Total counts in each samples					
& Download as csv		🛓 Dow	nload as csv		🛓 Download as c	8V	*	Download as csv					

Figure S43. The summary table for the Kruskal-Wallis test. The last three columns contain the p-value of the pairwise comparison that will display if the Post-hoc test is selected as yes. Likewise, similar tables were generated for the ANOVA.

Session information from R

Summary Table Plot

Here will a list of loaded packages with their version to develop this application (Figure S44).

Figure S44. MetaDAVis application is developed and tested with the listed package version in Windows, RedHat, Ubuntu

References:

- McMurdie and Holmes (2013) phyloseq: An R package for reproducible interactive analy sis and graphics of microbiome census data PLoS ONE 8(4):e61217
- Oksanen, F.J., et al. (2017) Vegan: Community Ecology Package. R package Version 2.4 -3. https://CRAN.R-project.org/package=vegan
- Chang W, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, Allen J, McPherson J, Diper t A, Borges B (2022). shiny: Web Application Framework for R. R package version 1.7.4 .9000, https://shiny.rstudio.com/.
- Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
- Wickham H (2007). "Reshaping Data with the reshape Package." Journal of Statistical So ftware, 21(12), 1–20. http://www.jstatsoft.org/v21/i12/.
- Tang Y, Horikoshi M, Li W (2016). "ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages." The R Journal, 8(2), 474–485. doi:10.32614/RJ-2016-060 , https://doi.org/10.32614/RJ-2016-060.
- Müller K, Wickham H (2022). tibble: Simple Data Frames. https://tibble.tidyverse.org/, h ttps://github.com/tidyverse/tibble.
- Wickham H, Seidel D (2022). scales: Scale Functions for Visualization. https://scales.r-li b.org, https://github.com/r-lib/scales.
- Gu Z (2022). "Complex Heatmap Visualization." iMeta. doi: 10.1002/imt2.43.
- Wickham H, Girlich M (2022). tidyr: Tidy Messy Data. https://tidyr.tidyverse.org, https://github.com/tidyverse/tidyr.
- Wickham H, François R, Henry L, Müller K (2022). dplyr: A Grammar of Data Manipula tion. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr.
- Pedersen T (2022). patchwork: The Composer of Plots. https://patchwork.data-imaginist. com, https://github.com/thomasp85/patchwork.
- McCarthy DJ, Campbell KR, Lun ATL, Willis QF (2017). "Scater: pre-processing, qualit y control, normalisation and visualisation of single-cell RNA-seq data in R." Bioinformat ics, 33, 1179-1186. doi: 10.1093/bioinformatics/btw777.
- Love MI, Huber W, Anders S (2014). "Moderated estimation of fold change and dispersi on for RNA-seq data with DESeq2." Genome Biology, 15, 550. doi: 10.1186/s13059-014 -0550-8.
- Robinson MD, McCarthy DJ, Smyth GK (2010). "edgeR: a Bioconductor package for dif ferential expression analysis of digital gene expression data." Bioinformatics, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616.
- Paulson JN, Olson ND, Braccia DJ, Wagner J, Talukder H, Pop M, Bravo HC (2013). me tagenomeSeq: Statistical analysis for sparse high-throughput sequencing. Bioconductor p ackage, http://www.cbcb.umd.edu/software/metagenomeSeq.
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). "limma power s differential expression analyses for RNA-sequencing and microarray studies." Nucleic Acids Research, 43(7), e47. doi: 10.1093/nar/gkv007.
- Lun A (2022). bluster: Clustering Algorithms for Bioconductor. R package version 1.8.0.
- Ernst F, Shetty S, Borman T, Lahti L (2022). mia: Microbiome analysis. R package versi on 1.6.0, https://github.com/microbiome/mia.

- Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J (2022). GGally: Extension to 'ggplot2'. https://ggobi.github.io/ggally/, https://github.com/ggobi/ggally.
- Kassambara A (2022). _ggpubr: 'ggplot2' Based Publication Ready Plots_. R package ver sion 0.5.0, <https://CRAN.R-project.org/package=ggpubr>.
- Shetty S, Lahti L (2022). microbiomeutilities: microbiomeutilities: Utilities for Microbio me Analytics. R package version 1.00.17.
- Xie Y, Cheng J, Tan X (2022). _DT: A Wrapper of the JavaScript Library 'DataTables'_. R package version 0.26, https://CRAN.R-project.org/package=DT
- Dinno A (2017). dunn.test: Dunn's Test of Multiple Comparisons Using Rank Sums_. R package version 1.3.5, https://CRAN.R-project.org/package=dunn.test>.
- Pedersen T, Nijs V, Schaffner T, Nantz E (2022). _shinyFiles: A Server-Side File System Viewer for Shiny_. R package version 0.9.3, https://CRAN.R-project.org/package=shinyFiles>.
- Chang W (2021). _shinythemes: Themes for Shiny_. R package version 1.2.0, <https://C RAN.R-project.org/package=shinythemes>.
- Wickham H, Hester J, Chang W, Bryan J (2022). _devtools: Tools to Make Developing R Packages Easier_. R package version 2.4.5, https://CRAN.R-project.org/package=devtools>.
- Morgan M (2022). _BiocManager: Access the Bioconductor Project Package Repository _ . R package version 1.30.19, <https://CRAN.R-project.org/package=BiocManager>.
- Storey JD, Bass AJ, Dabney A, Robinson D (2022). qvalue: Q-value estimation for false discovery rate control. R package version 2.30.0, <u>http://github.com/jdstorey/qvalue</u>.
- Yu G (2021). _ggplotify: Convert Plot to 'grob' or 'ggplot' Object_. R package version 0.1 .0, <https://CRAN.R-project.org/package=ggplotify>.
- Leo Lahti et al. microbiome R package. URL: <u>http://microbiome.github.io</u>
- Sievert C (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. Ch apman and Hall/CRC. ISBN 9781138331457, <u>https://plotly-r.com</u>.
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12: R60. doi:10.1186/gb-2011-12-6-r60
- 38. Nickols WA, Kuntz T, Shen J, Maharjan S, Mallick H, Franzosa EA, et al. MaAsLin 3: Refining and extending generalized multivariable linear models for metaomic association discovery. 2024. doi:10.1101/2024.12.13.628459

•